Applying the Naïve Bayes Classifier to Assist Users in Detecting Speech Recognition Errors

نویسندگان

  • Lina Zhou
  • Jinjuan Feng
  • Andrew Sears
  • Yongmei Shi
چکیده

Speech recognition (SR) is a technology that can improve accessibility to computer systems for people with physical disabilities or situation-introduced disabilities. The wide adoption of SR technology; however, is hampered by the difficulty in correcting system errors. HCI researchers have attempted to improve the error correction process by employing multi-modal or speech-based interfaces. There is limited success in applying raw confidence scores (indicators of system’s confidence in an output) to facilitate anchor specification in the navigation process. This paper applies a machine learning technique, in particular Naïve Bayes classifier, to assist detecting dictation errors. In order to improve the generalizability of the classifiers, input features were obtained from generic SR output. Evaluation on speech corpuses showed that the performance of Naïve Bayes classifier was better than using raw confidence scores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence

This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Comparison of Decision Tree and Naïve Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment

In today world of internet, it is important to feedback the users based on what they demand. Moreover, one of the important tasks in data mining is classification. Today, there are several classification techniques in order to solve the classification problems like Genetic Algorithm, Decision Tree, Bayesian and others. In this article, it is attempted to classify researchers to “Expert” and “No...

متن کامل

BUAP_1: A Naïve Approach to the Entity Linking Task

In these notes we are reporting the obtained results by applying the Naïve Bayes classifier to the Entity Linking task of the Knowledge Base Population track at the Text Analysis Conference. Three different runs were submitted to the challenge, each with different ways of approaching the application of the above mentioned classifier. The obtained results were very low, and recent analyses showe...

متن کامل

Physical Features Based Speech Emotion Recognition Using Predictive Classification

In the era of data explosion, speech emotion plays crucial commercial significance. Emotion recognition in speech encompasses a gamut of techniques starting from mechanical recording of audio signal to complex modeling of extracted patterns. Most challenging part of this research purview is to classify the emotion of the speech purely based on the physical characteristics of the audio signal in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005